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An update on cholinergic regulation of
cholecystokinin-expressing basket cells
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Abstract Information processing and transfer within cortical circuits requires precise
spatiotemporal coordination of excitatory principal cell activity by a relatively small population of
inhibitory interneurons that exhibit remarkable anatomical, molecular and electrophysiological
diversity. One subtype of interneuron, the cholecystokinin-expressing basket cell (CCKBC),
is particularly well suited to integrate and impart emotional features of an animal’s physio-
logical state to principal cell entrainment through the inhibitory network as CCKBCs are
highly susceptible to neuromodulation by local and subcortically generated signals commonly
associated with ‘mood’ such as cannabinoids, serotonin and acetylcholine. Here we briefly review
recent studies that have elucidated the cellular mechanisms underlying cholinergic regulation of
CCKBCs.
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The mammalian neocortex and hippocampus integrate
and process multiple sources of sensory and contextual
information via reciprocally connected neuronal networks
composed of excitatory glutamatergic principal cells and
inhibitory GABAergic interneurons. Such computation
requires a delicate balance between excitation and
inhibition in which relatively few interneurons are able
to rapidly pace and synchronize large populations of
principal cells to effectively coordinate central information
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transfer. The precision of this coordination largely relies
upon a remarkable heterogeneity within the GABAergic
interneuron population that allows the inhibitory network
to dynamically control principal cell excitability in both
space and time (Klausberger et al. 2005; Klausberger &
Somogyi, 2008; Isaacson & Scanziani, 2011).

Spatially, a clear division of labour is evident between
interneurons with axonal projections that preferentially
target either the perisomatic or dendritic compartments of
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the postsynaptic cells they innervate. This gross anatomical
divergence optimally positions dendrite-targeting inter-
neurons to control the efficacy, plasticity and summation
properties of principal cell synaptic inputs, and peri-
somatic targeting interneurons to control network
synchronicity and output by coordinating action potential
(AP) generation amongst large groups of principal cells
(Freund & Buzsaki, 1996; Freund & Katona, 2007).
Temporal specialization is determined in part by laminar
positioning within a given circuit as this dictates afferent
recruitment (e.g. preferential ‘feedforward’ or ‘feed-
back’ drive). However, even two broadly anatomically
similar interneurons with overlapping afferent input can
exert distinct inhibitory influences on the network due
to further divergence in electrophysiological properties
conferred by unique expression profiles of channels,
receptors, calcium binding proteins and neuropeoptides
(McBain & Fisahn, 2001; Freund, 2003; Markram
et al. 2004). This divergence is particularly evident
in comparing the two dominant populations of peri-
somatically targeting basket cells. Parvalbumin-positive
basket cells (PVBCs) are optimally designed for timing
precision with their fast membrane time constants,
non-accommodating fast-spiking behaviour, and tightly
calcium-coupled synchronous GABA release (Bucurenciu
et al. 2008; Doischer et al. 2008; Hu et al. 2010). In contrast
cholecystokinin basket cells (CCKBCs) are better suited to
temporal integration with their slower membrane time
constants, accommodating low frequency firing profiles,
and loosely coupled calcium-dependent synchronous
GABA release with a prominent asynchronous component
recruited with repetitive activation (Hefft & Jonas, 2005;
Daw et al. 2009, 2010; Szabo et al. 2010).

Based on these differences it has been proposed that
PVBCs mediate a rigid clockwork pacing function for the
generation and maintenance of fast cortical oscillations
while CCKBCs serve as plastic fine-tuning devices that
modulate the PVBC-entrained network (Freund, 2003;
Freund & Katona, 2007). Consistent with this model
PVBCs are primarily driven in a rapid, efficient and faithful
manner by local principal cells with relative immunity to
slower signalling neuromodulatory substances (Glickfeld
& Scanziani, 2006; Freund & Katona, 2007). In contrast
network engagement of CCKBCs occurs with considerable
jitter requiring temporally summating coincident activity
from multiple excitatory afferent pathways and is strongly
influenced by a variety of neuromodulators (Glickfeld &
Scanziani, 2006; Freund & Katona, 2007). It is this neuro-
modulatory tone of CCKBCs that is considered to impart
emotional and motivational features of an animal’s physio-
logical state to the perisomatic inhibitory system. Indeed
CCKBCs are heavily endowed with receptors for many
signals commonly associated with ‘mood’ such as end-
ocannabinoids, serotonin, acetylcholine, noradrenaline
and neuropeptide Y. Thus, in addition to their direct

influence on the excitatory glutamatergic principal cells,
these neuromodulatory substances can influence circuit
information processing and transfer through modulation
of CCKBC function. Even at embryonic stages as cells
fated to become CCKBCs exit the caudal ganglionic
eminence (CGE) progenitor pool they express receptors
for serotonin and cannabinoids suggesting roles for these
signals in CCKBC proliferation, migration and circuit
integration (Morozov et al. 2009; Lee SH et al. 2010;
Tricoire et al. 2010; Vucurovic et al. 2010). Initial attempts
to elucidate the effects of various neuromodulators
on specific interneuron subpopulations were typically
confounded by heterogeneity within the entire population
sampled (e.g. McQuiston & Madison, 1999a). However,
the recent generation of GFP reporter mice to selectively
target specific interneuron subtypes combined with strict
post hoc inclusion standards to limit findings to a uniform
interneuron population has facilitated increasingly refined
functional interrogation of diverse interneuron sub-
types (e.g. McQuiston & Madison, 1999a; Lawrence
et al. 2006b; Cea-del Rio et al. 2010, 2011). Here we
briefly review several recent studies that have exploited
this experimental approach to examine the cholinergic
regulation of CCK-containing interneuron function.

Muscarinic acetylcholine receptors

Basal forebrain cholinergic input to the neocortex and
hippocampus critically regulates arousal, attention and
learning (Jones, 2004; Hasselmo, 2006). At the neuro-
nal network level this regulation reflects cholinergically
driven changes in the magnitude of cortical oscillations
in relation to an animal’s behavioural state (Lawrence,
2008). The convergent influence of cholinergic signalling
and perisomatic inhibition on network oscillations
suggests an important link between the cholinergic and
GABAergic systems in dynamically regulating principal
cell coordination. Indeed while acetylcholine (ACh)
directly modulates glutamatergic transmission, the ability
of cholinergic drive to entrain principal cell ensembles also
requires direct modulation of GABAergic interneurons
through both nicotinic and muscarinic receptors (nACh
and mAChRs, respectively).

Initial evidence for direct neuromodulation of
CCK-expressing interneurons by ACh came from studies
by Kawaguchi, as well as McQuiston and Madison, in
the neocortex and hippocampus, respectively (Kawaguchi,
1997; McQuiston & Madison, 1999a). In rat neocortex,
application of the non-specific AChR agonist carbachol,
or the general mAChR agonist muscarine, produced
hyperpolarizing, depolarizing, or biphasic responses
in CCK-containing GABAergic cells with regular- or
burst-spiking properties, without altering the properties
of fast-spiking PVBCs (Kawaguchi, 1997). In hippocampal
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interneurons, the predominant muscarinic response
observed was depolarization, but biphasic responses were
also evident in some stratum radiatum interneurons, a
portion of which undoubtedly included CCK-containing
interneurons (McQuiston & Madison, 1999a). In a sub-
set of these interneurons mAChR activation was observed
to convert the afterhyperpolarization (AHP) following
injection of a square wave current pulse to trigger AP
firing into an afterdepolarization (ADP) that frequently
resulted in continued firing beyond the duration of
the current injection (McQuiston & Madison, 1999b).
Moreover, changes in interneuron membrane voltage and
ADP were also elicited by release of endogenous ACh
using bulk stimulation of cholinergic fibres arriving in the
hippocampus (Widmer et al. 2006). Although these initial
studies clearly indicated that GABAergic inhibitory inter-
neurons were targets for cholinergic modulation, what
they did not clarify was whether specific homogeneous
cohorts of interneurons, identified for example by their
anatomical, morphological, or neurochemical content,
were modulated in a stereotypic manner by muscarinic
receptor activation.

Recent studies have tackled this question head
on and demonstrated that subtypes of anatomically/
neurochemically identified CCK-positive interneurons
display largely overlapping and stereotypic muscarinic
receptor response profiles (Widmer et al. 2006; Cea-del
Rio et al. 2010, 2011). The cell bodies of CCK-containing
interneurons are distributed throughout almost all sub-
fields of the mammalian CA1 hippocampus with the vast
majority of CCK-containing interneurons being captured
by the CCKBC and CCK-Schaffer collateral-associated
(CCKSCA) cell types (Tricoire et al. 2011). Both CCKBCs
and CCKSCAs typically have their somatodendritic axis
oriented such that they receive their primary excitatory
input from the Schaffer collateral axons of CA3 pyramidal
cells. While CCKBCs make their axon targets onto
a narrow somatic and proximal dendritic domain of
pyramidal neurons, the axons of CCKSCAs typically
target wide areas of the remaining principal cell dendrites
(Fig. 1). This limited overlap in axonal output domains
suggests they perform distinct functions in the ongoing
neuronal network, despite receiving a common source
of afferent drive. Therefore, whether these two neuro-
chemically similar but morphologically distinct cell
types respond similarly or distinctly in the face of
muscarinic receptor activation was until recently an open
question.

Both CCKBCs and CCKSCAs typically express mRNAs
for M1 and M3 mAChRs, but show subtle differences
in the occurrence of M2, M4 and M5 mAChR mRNAs,
all of which are present with greater frequency in
CCKSCAs (Cea-del Rio et al. 2010, 2011). Muscarine
receptor activation increases action potential duration
and frequency, reduces spike adaptation, and promotes

an ADP generation in both CCKBCs and CCKSCAs
(Cea-del Rio et al. 2010, 2011) (Fig. 1A and B).
Pharmacological intervention, and recordings from M1,
M3 and double M1/M3 mAChR knockout (KO) mice,
indicated that these responses are synergistically mediated
by both M1 and M3 mAChRs (Cea-del Rio et al. 2010,
2011). Specifically, M3 receptor activation controls the
muscarinic receptor-mediated increase in firing frequency,
whereas both M1 and M3 muscarinic receptor activation
is required for the full conversion of the spike AHP
into a spike ADP (Fig. 1C and D). These data stand
in sharp contrast to that obtained from PVBCs where
M1 muscarinic receptors are the sole mediators of
somatodendritic muscarinic receptor-mediated excitation
(Cea-del Rio et al. 2010).

Activation of somatodendritic mAChRs on CCK inter-
neurons is likely to have important consequences for
the roles played by these cells in the cortical network.
For example, brief trains of glutamatergic synaptic input
delivered concomitantly with mAChR activation triggered
long-lasting repetitive firing, which far exceeded the
duration of the synaptic stimuli (Cea-del Rio et al. 2010).
This suggests that prolonged tonic firing of CCK inter-
neurons may result from modest glutamatergic excitatory
synaptic drive following a brief episode of cholinergic
input. Furthermore, muscarinic receptor modulation
amplified 0.5–2 Hz subthreshold membrane oscillatory
activity in both CCKBCs and CCKSCAs suggesting that
cholinergic tone primes these cells to participate in low
frequency network activity (Cea-del Rio et al. 2011).
Indeed muscarinic receptor activation enhanced the
efficiency of CCKBC/SCA recruitment during sinusoidal
current injections in the theta frequency range to
mimic slow network oscillations (Cea-del Rio et al.
2011). Moreover, optogenetically driven ACh release
induced bursts of endocannabinoid-sensitive perisomatic
inhibitory synaptic currents in CA1 pyramidal cells in the
theta frequency range through mAChR activation (Nagode
et al. 2011).

Although CCKBCs and CCKSCAs show mostly
stereotypic responses to muscarinic receptor activation,
several notable differences were also observed. In
addition to promoting theta engagement, muscarine
receptor activation broadened the frequency response
preference of CCKBCs, but not that of CCKSCAs, to
drive engagement during higher frequency oscillatory
activities in the beta range (15–20 Hz) (Cea-del Rio
et al. 2011). A further difference between the muscarinic
profiles of CCKBCs and CCKSCAs was noted in
the effects on resting membrane potential. During
muscarine application CCKBCs undergo an M1/M3
mAChR-dependent depolarization (Cea-del Rio et al.
2010), possibly mediated by closure of Kv7 channels
turning off the M-current (Lawrence et al. 2006a). In
contrast CCKSCAs undergo a biphasic membrane voltage
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deflection in response to muscarine application, which
is driven separately by M1 and M3 mAChRs during
the hyperpolarizing and depolarizing phases, respectively
(Cea-del Rio et al. 2011) perhaps arising through
M1-mediated GIRK channel activation (McQuiston &

Madison, 1999b) followed by M3-mediated inhibition of
the M-current (Fisahn et al. 2002).

Independent of the somatodendritic response profiles
described above muscarine also depresses GABA release
from CCKBC presynaptic terminals (Kim et al. 2002;

Figure 1.
A and B, upper panels are
representative morphological
reconstructions of typical
CCK-containing Schaffer
collateral-associated (CCKSCAs) and
basket cells (CCKBCs). Lower series of
panels show the voltage response from
–60 mV in control (black) and after bath
application of 10 μM muscarine (red) for
CCKSCAs (left) and CCKBCs (right). Grey
boxes represent the overlap of the
control and muscarinic afterdeflection
to highlight the emergence of the ADP
in the presence of muscarine. C, left
panels: representative traces for
mAChR-induced changes in M3 KO
CCKSCAs (upper) and M1 KO CCKSCAs
(lower). Normalized firing frequency
(upper right panel) and ADF summary
population plots for control (filled
circles), M1 KO CCKSCAs (open circles),
M3 KO CCKSCAs (open squares) and
M1M3 KO CCKSCAs (open triangles).
Data reproduced from Cea-del Rio et al.
2010, 2011.
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Neu et al. 2007). However, this modulation occurs
indirectly by mAChR activation on postsynaptic targets
innervated by CCKBCs leading to the liberation of
endocannabinoids from these targets and subsequent
activation of cannabinoid receptor 1 (CB1) receptors
on CCKBC terminals resulting in robust depression of
CCKBC release (Kim et al. 2002; Chevaleyre et al. 2006;
Neu et al. 2007). This indirect modulation contrasts with
PVBCs in which activation of M2 mAChRs directly on the
presynaptic terminals is reported to depress GABA release
from these cells (Hajos et al. 1998; Szabo et al. 2010).
Interestingly, endocannabinoid/CB1-mediated indirect
modulation of CCKBC release has also been implicated
in kainate and CCK receptor-driven depression of pre-
synaptic release from CCKBCs (Foldy et al. 2007; Karson
et al. 2008; Daw et al. 2010; Lourenco et al. 2010,
2011; Lee & Soltesz, 2011). However, while carbachol
depresses both synchronous and asynchronous CCKBC
release, kainate receptor activation selectively depresses
synchronous release without altering the asynchronous
component (Daw et al. 2010; Szabo et al. 2010). Thus,
while an increase in cholinergic tone promotes removal
of CCKBC inhibitory influence on the network, kainate
receptor activation selectively reduces temporal precision
of CCKBC output by selectively reducing phasic release.
Whether CCK peptide-induced depression of CCKBC
release is selective for synchronous release remains to be
determined.

Nicotinic acetylcholine receptors

Rapid cholinergic modulation of CCKBC function
can also occur through ionotropic nAChRs. Indeed
it has recently been reported that the entire cohort
of CGE-derived interneurons, which includes the
CCKBC subpopulation (Tricoire et al. 2011), is robustly
excited by nAChR activation (Lee S et al. 2010). Early
studies reported the presence of nicotinic excitatory
potsynaptic currents in hippocampal interneurons
primarily mediated through α7 subunit-containing
nAChRs (Frazier et al. 1998). Subsequent investigation
confirmed nAChR-mediated responsiveness of neocortical
CCKBCs but pharmacological profiles indicated
responses were mediated by α7 subunit-lacking, α4/β2
subunit-containing nAChRs (Porter et al. 1999; Férézou
et al. 2002). Indeed α7 subunit mRNA was detected
with less frequency than α4/5- and β2-encoding
transcripts in anatomically and molecularly identified
nicotinic-sensitive neocortical CCKBCs (Porter et al.
1999). Conflicting with this observation is a report that
the α7 subunit-encoding mRNA strongly colocalizes with
CB1 and CCK transcripts in the hippocampus suggesting
divergence in neocortical and hippocampal CCKBC
nAChR composition (Morales et al. 2008). Recently,
in adult mice anatomically confirmed hippocampal

CCKBCs were found to exhibit nAChR postsynaptic
currents using optogenetic techniques to trigger release
from septal cholinergic afferents confirming that
hippocampal CCKBC nAChRs are synaptically driven
(Bell et al. 2011). However, as in neocortex these
rapid postsynaptic responses in hippocampal CCKBCs
exhibited pharmacological profiles consistent with α4/β2
subunit-containing nAChRs leaving the role of α7
subunit-containing receptors in question (Bell et al.
2011). Interestingly, α4/β2 nAChR gain of function
mutants serve as a model for autosomal dominant
nocturnal frontal lobe epilepsy (ADNFLE) and exhibit
enhanced network synchronization in the delta/theta
range (Klaassen et al. 2006). As the characteristic
phase-locked firing behaviour of CCKBCs during theta
oscillations suggests a prominent role for these cells in
regulating this rhythm (Klausberger et al. 2005), it is
tempting to speculate that the ADFNLE phenotype relates
in part to enhanced cholinergic recruitment of CCKBCs.
Concerning α7 nAChRs, it is possible that these receptors
function at extrasynaptic sites (Brumwell et al. 2002)
and/or participate in early development of CCKBCs
regulating their migration and circuit integration by
promoting electrophysiological maturation, including
establishment of mature chloride gradients (Liu et al.
2006; Bortone & Polleux, 2009).

Given their high calcium permeability, an alternative
role for α7 subunit-containing nAChRs could be
regulation of transmitter release from CCKBC pre-
synaptic terminals (MacDermott et al. 1999). Indeed
calcium influx through α7 nAChRs, in combination with
calcium-induced calcium release from internal stores
(CICR), is reported to drive action potential-independent
transmitter release from hippocampal mossy fibres
(Sharma & Vijayaraghavan, 2003; Sharma et al.
2008). Recently, an elegant study by Alger and
colleagues specifically examined the contribution of
nAChRs to GABA release from interneuron presynaptic
terminals (Tang et al. 2011). Interestingly, they found
that activation of nAChRs on the axons of peri-
somatically targeting interneurons robustly drives action
potential-independent GABA release and additionally
modulates action potential-dependent GABA release.
However, the contribution of α7-containing nAChRs
was minimal. Rather, the cholinergic recruitment of
perisomatic GABA release was primarily mediated
by α3/β4 subunit-containing nAChR-mediated
axonal depolarization with subsequent activation
of T-type calcium channels and CICR. Moreover,
while nAChR-driven GABA release was convincingly
demonstrated to involve PVBCs a role for this
phenomenon in driving release from CCKBC terminals
remains to be demonstrated.

In conclusion, recent advances in imaging and genetic
technology that permit the reliable identification of
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specific cohorts of local circuit inhibitory interneurons for
electrophysiological interrogation have rapidly advanced
our understanding and appreciation of the roles played
by many of these cell types in the local cortical circuit.
This review brings together recent data from some of
these studies regarding modulation of CCK-containing
inhibitory neurons by acetylcholine and its associated
muscarinic and nicotinic receptors. However, ACh
represents only one common cortical neuromodulator
and inhibitory interneurons are littered with receptors
for numerous others (including 5HT, dopamine, NPY,
noradrenaline, to name but a few). It is our hope
that by careful study of this armament of neuro-
modulatory receptors and their downstream response
profiles on identified subpopulations of interneurons
we will learn much about the roles played by neuro-
modulatory systems in sculpting the activity of inter-
neurons in the hippocampal and cortical network.
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